Publications
Google Scholar
All papers are available upon request
*Indicates co-first authors
Journal Articles
- Ji, H., Song, Y., Bindas, T., Shen, C., Yang, Y., Pan, M., Liu, J., Rahmani, F., Abbas, A., Beck, H., Lawson, K., & Wada, Y. (2025). Distinct hydrologic response patterns and trends worldwide revealed by physics-embedded learning. Nature Communications, 16, 9169. https://doi.org/10.1038/s41467-025-64367-1
- Liu, J., Shen, C., Pei, T., Kifer, D., & Lawson, K. (2025). The value of terrain pattern, high-resolution data and ensemble modeling for landslide susceptibility prediction. Journal of Geophysical Research: Machine Learning and Computation, 2(3), e2024JH000460. https://doi.org/10.1029/2024JH000460
- Liu, L., Zhao, X., Zhou, L., Liu, J., Li, W., Zhang, B., Ling, J., & Wu, F. (2025). Comparative analysis of machine-learning-based dissolved oxygen predictions in the Yellow River Basin: The role of diverse environmental predictors. Journal of Environmental Management, 393, 127138. https://doi.org/10.1016/j.jenvman.2025.127138
- Jamaat, A., Song, Y., Rahmani, F., Liu, J., Lawson, K., & Shen, C. (2025). Update hydrological states or meteorological forcings? Comparing data assimilation methods for differentiable hydrologic models. Journal of Hydrology, 663, 134137. https://doi.org/10.1016/j.jhydrol.2025.134137
- Aboelyazeed, D., Xu, C., Gu, L., Luo, X., Liu, J., Lawson, K., & Shen, C. (2025). Inferring plant acclimation and improving model generalizability with differentiable physics-informed machine learning of photosynthesis. Journal of Geophysical Research: Biogeosciences, 130(7), e2024JG008552. https://doi.org/10.1029/2024JG008552
- Song, Y., Bindas, T., Shen, C., Ji, H., Knoben, W. J., Lonzarich, L., Clark, M. P., Liu, J., van Werkhoven, K., Lamont, S., Denno, M., Pan, M., Yang, Y., Rapp, J., Kumar, M., Rahmani, F., Thébault, C., Adkins, R., Halgren, J., Patel, T., Patel, A., Sawadekar, K., & Lawson, K. (2025). High-resolution national-scale water modeling is enhanced by multiscale differentiable physics-informed machine learning. Water Resources Research, 61(4), e2024WR038928. https://doi.org/10.1029/2024WR038928
- Zhi, W., Baniecki, H., Liu, J., Boyer, E., Shen, C., Shenk, G., Liu, X., & Li, L. (2024). Increasing phosphorus loss despite widespread concentration decline in US rivers. Proceedings of the National Academy of Sciences, 121(48), e2402028121. https://doi.org/10.1073/pnas.2402028121
- Liu, J., Bian, Y., Lawson, K., & Shen, C. (2024). Probing the limit of hydrologic predictability with the Transformer network. Journal of Hydrology, 637, 131389. https://doi.org/10.1016/j.jhydrol.2024.131389
- Bindas, T., Tsai, W. P., Liu, J., Rahmani, F., Feng, D., Bian, Y., Lawson, K., & Shen, C. (2024). Improving river routing using a differentiable Muskingum-Cunge model and physics-informed machine learning. Water Resources Research, 60(1), e2023WR035337. https://doi.org/10.1029/2023WR035337
- Feng, D., Beck, H., De Bruijn, J., Sahu, R. K., Satoh, Y., Wada, Y., Liu, J., Pan, M., Lawson, K., & Shen, C. (2024). Deep dive into hydrologic simulations at global scale: Harnessing the power of deep learning and physics-informed differentiable models (δ HBV-globe1.0-hydroDL). Geoscientific Model Development, 17(18), 7181–7198. https://doi.org/10.5194/gmd-17-7181-2024
- Zhi, W., Klingler, C., Liu, J., & Li, L. (2023). Widespread deoxygenation in warming rivers. Nature Climate Change, 13(10), 1105–1113. https://doi.org/10.1038/s41558-023-01793-3
- Aboelyazeed, D., Xu, C., Hoffman, F. M., Liu, J., Jones, A. W., Rackauckas, C., Lawson, K., & Shen, C. (2023). A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: Demonstration with photosynthesis simulations. Biogeosciences, 20(13), 2671–2692. https://doi.org/10.5194/bg-20-2671-2023
- Liu, J., Hughes, D., Rahmani, F., Lawson, K., & Shen, C. (2023). Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats. Geoscientific Model Development, 16(5), 1553–1567. https://doi.org/10.5194/gmd-16-1553-2023
- Feng, D., Liu, J., Lawson, K., & Shen, C. (2022). Differentiable, learnable, regionalized process-based models with multiphysical outputs can approach state-of-the-art hydrologic prediction accuracy. Water Resources Research, 58(10), e2022WR032404. https://doi.org/10.1029/2022WR032404
- Liu, J., Rahmani, F., Lawson, K., & Shen, C. (2022). A multiscale deep learning model for soil moisture integrating satellite and in situ data. Geophysical Research Letters, 49(7), e2021GL096847. https://doi.org/10.1029/2021GL096847
- Tsai, W. P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., & Shen, C. (2021). From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. Nature Communications, 12(1), 5988. https://doi.org/10.1038/s41467-021-26107-z
- Ren, M., Xu, Z., Pang, B., Liu, J., & Du, L. (2020). Spatiotemporal variability of precipitation in Beijing, China during the wet seasons. Water, 12(3), 716. https://doi.org/10.3390/w12030716
- Liu, J., Xu, Z., Bai, J., Peng, D., & Ren, M. (2018). Assessment and correction of the PERSIANN-CDR product in the Yarlung Zangbo River Basin, China. Remote Sensing, 10(12), 2031. https://doi.org/10.3390/rs10122031
- Ren, M., Xu, Z., Pang, B., Liu, W., Liu, J., Du, L., & Wang, R. (2018). Assessment of satellite-derived precipitation products for the Beijing region. Remote Sensing, 10(12), 1914. https://doi.org/10.3390/rs10121914
- Liu, J., Xu, Z., Zhao, H., & He, J. (2019). Accuracy assessment for two satellite precipitation products: Case studies in the Yarlung Zangbo River Basin. Plateau Meteorology, 38, 386–396. (in Chinese)
- Liu, J., Xu, Z., Zhao, H., & Peng, D. (2018). Simulation of snowmelt runoff processes based on enhanced precipitation input module: Case studies in the Lhasa River Basin. Journal of Hydraulic Engineering, 49(11), 1396–1408. (in Chinese)
- Liu, J., Xu, Z., Zhao, H., Peng, D., & Zhang, R. (2018). Spatiotemporal variation of extreme precipitation events in the Yarlung Zangbo River Basin from 1973 to 2016, China. Mountain Research, 36, 750–764. (in Chinese)
Preprints
- Liu, J., Shen, C., O’Donncha, F., Song, Y., Zhi, W., Beck, H., Bindas, T., Kraabel, N., & Lawson, K. (2025). From RNNs to Transformers: benchmarking deep learning architectures for hydrologic prediction. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2025-1706
- Kraabel, N., Liu, J.*, Bian, Y., Kifer, D., & Shen, C. (2025). StefaLand: An efficient geoscience foundation model that improves dynamic land-surface predictions. *arXiv preprint. (* Indicates equal contribution). https://arxiv.org/html/2509.17942v1
- Li, P., Shen, C., Liu, J., Rahmani, F., & Lawson, K. E. (2025). Structural bias should be addressed before effective parameter learning: Insights from SMAP soil moisture simulations using differentiable process-based models. ESS Open Archive. https://doi.org/10.22541/essoar.175855507.72741303/v1
- Song, Y., Clark, M., Liu, J., Halgren, J., Lawson, K., & Shen, C. (2024). Prominent impacts of hydrologic scaling laws on climate risks. Research Square. https://doi.org/10.21203/rs.3.rs-4584048/v1
- Rahmani, F., Shen, C., Appling, A., Wada, Y., Song, Y., Ji, H., Liu, J., & Lawson, K. (2025). Substantially larger and more amplified U.S. groundwater recharge projected by multi-objective big-data-trained models. Nature Water.